

SHAPING OUR FUTURE SKIES

canso.org

CANSO's Approach to Operationalizing Key Performance Indictors

James Carr

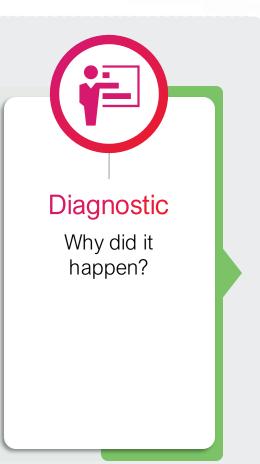
NAV CANADA - Director Corporate Performance and Sustainability CANSO – Chair Global Benchmarking Workgroup

15 October 2025

Recommended KPIs for Measuring ANSP Operational Performance

Focus on capacity, efficiency and predictability

- Developed by the CANSO Operational Performance Workgroup
- Aligned with ICAO Doc 9883
- Expanded application specific to ANSP Operational Performance
- Global Benchmarking Workgroup has initiated an update of the document to assess completeness of KPIs and to increase document usability


Recommended Key
Performance Indicators
for Measuring ANSP
Operational Performance

hv	reduction		page 4
Đ,	entive Su	mmary	page 5
	na na man		
1	Backgrow		page 7
z		v of ANSP Current Practice and ICAO Guidence	
		Service-Charters and Regulatory Governance	
	2.21CAO	Performance Indicators and Global Plan	page 9
3	Stakehol	der Expectations	page 11
ě.	ATM Syc	torn Interdependencies	page 14
1	Operation	rol Performance KFAs and KPIs	page 54
	5.1 Cape	city Key Performance Indicators	page 17
	SZDřek	ency Key Performence Indicators by Phase of Flight	page 19
	52.15	seface Operations at the Departure Associations Phase	pege 20
	5230	Separture and Initial Clinto out Phase	page 22
	5.2.31	in Route Phase	page 25
	5240	Descent and Armal Phases	page 29
	5235	Surface Operations at the Destriction Aerodrame Phase	page 12
	5.3 Other	Efficiency Key Performance Indicators	pege 31
	5.4 Prediction	ctability Key Performance Indicators	pepe 54
	5.5 Sunn	nary of KPI Data Requirements and Tools	pege 38
٠	Concket	on and Racoversandations	Dege 40
	6.1 CANS	SO Reconvended Core KPs	pege 40
	6.1.10	Separity and Capacity Utilisation	page 41
	6.1.21	Tight Trajectory Efficiency	page 41
	6.1.3 4	page 42	
	6.2 Appli	pepe 41	
Ŧ	Referenc	10	page 44
			1000
	pends 1	CANSO Operational Performance KPIs	page 45
A	pends 2	ICAD Performance Indicators	page 47
A	opendix 3	Abbreviations_	page 51

Descriptive and Diagnostic Capabilities Enable Predictive and Prescriptive Analytics

Proposed document scope

Linking context

Canso Carl air navigation services organisation

Recommended Key Performance Indicators for Measuring ANSP Operational Performance

Participate in the Review

Document review goals

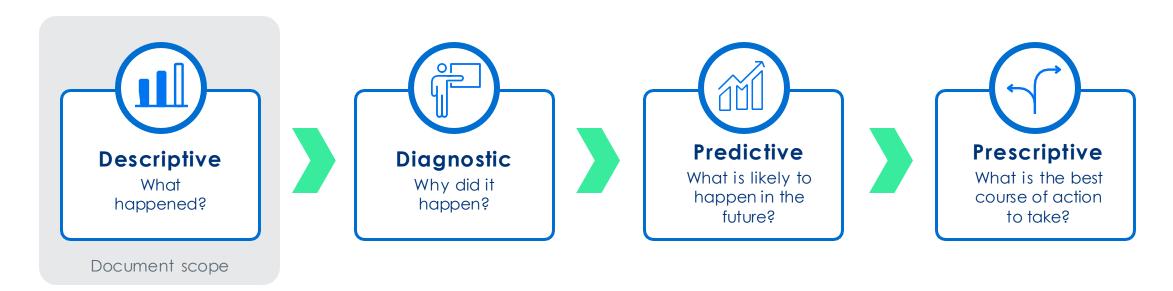
- 1. Usability
- Clarity on what is being measured
- Definitions
- Greater emphasis on data accessibility linked to evolution of KPIs
- Interdependencies and correlations
- Outliers and exceptions
- 2. Appropriateness
 - Completeness of KPIs
 - Contextual measures
- 3. Format
- Update layout to improve accessibility
- Increase use of visuals
- Include case studies
- 4. Other
- Downstream use of KPIs
- Identification and attribution of variation
- Data sharing and collaboration

Contact James Carr at james.carr@navcanada.ca to participate

Interregional Flight Performance

Interregional Flight Performance

As the collective "Voice of Airspace", CANSO has a strategic goal to become the authoritative source on airspace. By accessing ATM flight efficiency performance, CANSO can better:


- Drive productive dialog towards collectively raising the bar on performance
- Identify actions to support collaboration and assist with ATM challenges
- Defend ATM performance where reasons for inefficiency are structural

Within this context, ALG has collaborated with CANSO to create an interregional flight performance report with the objective to generate data-driven discussions on interregional flight performance

Report aim

This report aims to provide a descriptive overview of the horizontal performance, average flight time and flight time variability across key interregional routes, serving as a foundation for expert analysis and diagnostic discussions

Through a descriptive lens, this report outlines the current operational environment across key routes. Its role is to summarize observed patterns and support informed discussions going forward

Routes in both directions across 17 city pairs – each connecting cities in different international regions – were selected based on annual traffic volume and data quality

City pair	Routes
Bogota - Madrid	BOG ⇌ MAD
Bogota – Miami	BO G ⇌ MIA
Ciudad de México - Madrid	MEX ≠ MAD
Doha – London	DOH ⇌ LHR
Dubai – Istanbul	DXB⇌ IST
Dubai – London	DXB ⇌ LHR
Dubai - Mumbai	DXB ≠ BOM
Dubai – New Delhi	DXB ⇌ DEL
Johannesburg – Paris	JNB ⇌ CDG
London – Los Angeles	LHR ⇌ LAX
London – New York	LHR ≠ JFK
London – Singapore	LHR ≠ SIN
Melbourne – Singapore	MEL ≠ SIN
Miami – São Paulo	MIA ⇌ GRU
New York – Paris	JFK ≠ CDG
Orlando – San Juan	MCO ≠ SJU
Singapore – Sydney	SIN ≠ SYD

This report is based off ADS-B data for the year 2024

Key Performance Indicators

The computed KPIs have been obtained from CANSO's Recommended Key Performance Indicators for Measuring ANSP Operational Performance and offer a measure of horizontal performance as well as variability in flight times

KPI09 - En-Route Direct Route Distance Extension

En-route flight phase 'extensions' in direct flights between airports with respect to the GCD

- Data required: ADS-B only
- Formula: Excess distance with respect to GCD: actual flight distance GCD
- **KPI Forms:** Total or Average excess distance in Km

KPI17 – Average Flight Time

Measures the aviation system's ability to maintain flight efficiency as traffic increases

- Data required: ADS-B only
- Formula: SUM(Flight time)/#ATMs
- KPI Forms: Minutes/flight

KPI20 – Travel time variation

Variability of the entire gate-out to gate-in travel time or may sub-divided by phase of flight

- Data required: ADS-B only
- Formula: 85th (P2) 15th (P1)
- KPI Forms: Minutes/flight

CONSIDERATIONS

Measures are restricted to the en-route environment:

- 40 NM from origin
- 100 NM from destination

KPI normalization ensures comparability across routes:

- Extension →normalized by Great Circle Distance (GCD)
- Time Variability →normalized by average travel time

2024 PERFORMANCE KPIS

		2023	2024	Δ
Traffic [# ATMs]		118494	124 585	+5.1 %
Flown Distance	Total	313 M	335 M	+7.2 %
[NM]	Per Flight	2639	2691	+2.0 %
En-Route	Total	9.7 M	13.2 M	+35 %
Extension [NM]	Per Flight	82	106	+29 %
En-Route	Total	Total 38.8 M 41.3 M +6.4 %		
Flight Time [min]	Per Flight	327	331	331 +1.1 %
Flight Time Variability [min]	Per Flight	27.6	28	+1.4%

Based on three core KPIs from CANSO's 21-metric framework, the analysis examines 17 high-traffic routes – 3% of global interregional flights by traffic – backed by strong ADS-B data.

INSIGHTS

ALG CANSO

DRIVING ACTIONS THROUGH DATA

2024 AIR TRAFFIC PERFORMANCE

 GEOPOLITICAL CONFLICTS AS THE CAUSE OF AIR TRAFFIC PERFORMANCE DEGRADATION IN SOME ROUTES FOR 2024

En-route distance extension drop with respect to 2023 is mainly due to conflict-related airspace closures, especially in Central Africa, Southwest Asia, and northern South America – impacting several key interregional flows.

CONSISTENT OPERATION IN THE NETWORK DESPITE ROUTING CONSTRAINTS

While the mentioned geopolitical events have led to extension performance drop, flight time variability has been resilient. Increases in variability are usually tied to short-term disruptions, not long-term constraints.

DISRUPTION TO SURVEILLANCE DATA

ADS-B data has been increasingly compromised in comparison to 2023 due to jamming and spoofing in conflict zones, requiring careful filtering for consistent performance computation.

CANSO'S BENCHMARKING

GLOBAL AIR TRAFFIC PERFORMANCE AWARENESS

CANSO's benchmarking strengthens international routes monitoring, which support CONOPS planning, trend analysis, and systemic performance tracking.

REGIONAL COLLABORATIVE DIALOG ACROSS ANSPS AND AIRLINES

Interregional air traffic performance monitoring uses ATM performance metrics to foster dialogue, identify collaboration opportunities, and build a shared understanding of interregional performance levels.

INTEGRATED LOCAL APPLICATION

CANSO's benchmarking framework offers an analytical lens that can highlight systemic regional patterns, enabling actions at local scope. Such monitoring systems can also be highly beneficial when applied at airport, ANSP and airline level.

Report structure

The report is organized in two sections

Routes overview

Identify general trends, differences between routes covering similar distances and highlight directional differences within each city pair

- Flight distance distribution: Spread of actual distances per route, with the GCD as reference
- Average en-route extension: Typical distance flown per route exceeding the direct great-circle-distance
- Flight time average and variability: Typical time to fly through a route and the consistency of this flight time
- Integrated Performance assessment: Simultaneous visualization of en-route extension and time variability, with traffic and GCD as context

City pair factsheets

Provide detailed KPI results for each route direction within a city pair, including year-over-year comparisons, monthly trends, and trajectory maps

- KPIs outcomes: Number of ATMS and average flight distance, flight time, en-route extension and flight time variability per city pair
- Year-over-year percentage increase: Percentage difference for each metric compared to the same period in the previous year
- Trajectories maps: Visual comparison of flight trajectories for the current and previous year
- Metrics monthly trends: Evolution of all metrics over the past 24 months, shown month by month

Performance Metrics Across Routes

Provides a comparative overview of KPIs across all analysed routes, including traffic levels, distance flown, extensions, and temporal variability

Routes 1-9

City pair	Route	Traffic (# ATMs)	Avg. Flight Distance (NM)	Avg. Extension lower bound – upper bound (NM)	Avg. Flight Time (min)	Flight Time Variability (min)
Donala Madrid	BOG → MAD	2907	4295	89-97	503	33
Bogota - Madrid	MAD → BOG	3091	4329	123-131	546	43
Domoko Alimoi	BOG → MIA	3488	1232	48-63	156	12
Bogota – Miami	MIA → BOG	3487	1222	42-53	153	10
	MEX → MAD	2076	4914	139-150	552	41
Ciudad de México – Madrid	LAAD BLAEV	209-218	633	67		
Doha – London	DOH → LHR	3186	2817	113-124	367	28
Dona – London	LHR → DOH	LHR → DOH 3186 2797 96-103 332	23			
Dubai latanbul	DXB→ IST	3249	1648	139-152	221	28
Dubai – Istanbul	IST → DXB 3249 1642 135-146	196	19			
Dubai landan	DXB → LHR	3760	2990	1 42-157	391	33
Dubai – London	LHR → DXB	3761	2975	134-143	346	23
Dubai – Mumbai	DXB → BOM	5642	935	23-34	111	18
Dubai - Mumbai	BOM → DXB	5642	935	32-34	123	22
Dubai – New Delhi	DXB → DEL	4750	1113	66-73	128	22
Dubdi - New Deini	DEL → DXB	DEL → DXB 4749 1151 82-111	158	33		
lohannoshura Paris	JNB → CDG	366	4963	380-401	609	20
Johannesburg – Paris	CDG → JNB	366	4989	393-428	606	20

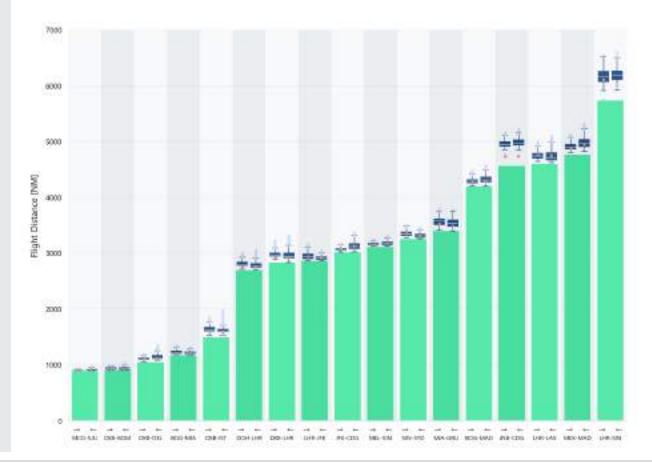
Performance Metrics Across Routes

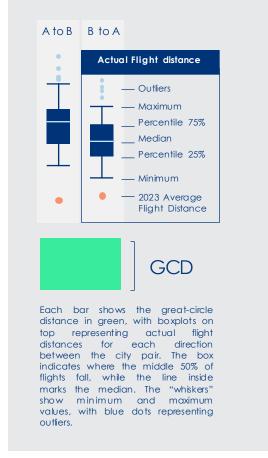
Provides a comparative overview of KPIs across all analysed routes, including traffic levels, distance flown, extensions, and temporal variability

Routes 10-17

City pair	Route	Traffic (# ATMs)	Avg. Flight Distance (NM)	Avg. Extension lower bound – upper bound (NM)	Avg. Flight Time (min)	Flight Time Variability (min)
London Los Angeles	LHR → LAX	3638	4755	119-154	600	37
London – Los Angeles	LAX → LHR	3637	47 48	132-147	543	32
London – New York	LHR → JFK	7781	2951	85-92	393	36
LONGON - NEW TOIK	JFK →LHR	7778	2919	42-60	335	31
London – Singapore	LHR → SIN	2543	6172	415-433	715	34
London – Singapore	SIN → LHR	2561	6184	440-445	772	49
Melbourne – Singapore	MEL → SIN	3884	3162	39-50	402	29
Melboottle – Siligapore	SIN → MEL	3856	3183	63-70	373	22
Miami – São Paulo	MIA → GRU	1525	3569	143-170	427	26
Midifii – 3do Fdoio	GRU → MIA	1524	3544	138-145	428	21
New York – Paris	JFK → CDG	3895	3076	45-57	355	32
New Tork - Paris	CDG → JFK	3894	3133	105-114	415	37
Orlando – San Juan	MCO→SJU	6308	908	8-15	112	12
Onando – San Joan	SJU → MCO	6313	921	13-29	128	16
Singapore – Sydney	SIN → SYD	3219	3352	69-97	391	25
Singapore - Sydney	SYD → SIN	3198	3318	56-63	419	31

Flight Distance Distribution


Shows the statistical distribution of actual en-route distances flown, providing insight into the typical and extreme values observed across flights, with the GCD as reference

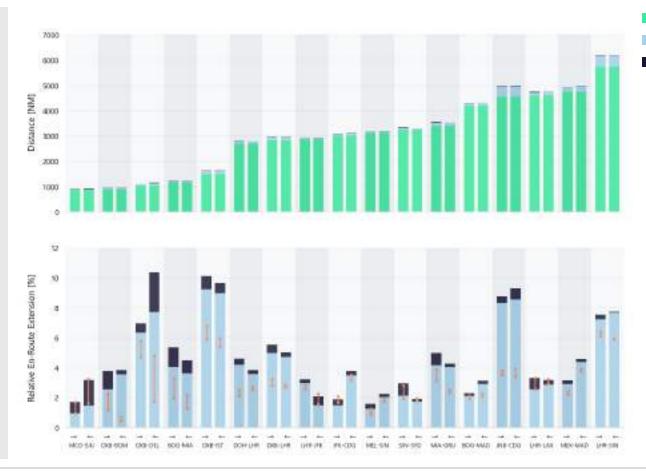

Flight Distance Analysis

Within this plot, a first point of interest is the presence of routes with large dispersions compared to others of similar Great Circle Distance (GCD). This suggests considerable variability in how these routes were operated throughout 2024. In some cases, this reflects punctual reroutings, in others a gradual shift in preferred trajectories over time, and on others it indicates the co-existence of distinct routings for the same city pair.

Another relevant pattern involves routes where the minimum observed flight distance remains well above the GCD. This indicates that, even under optimal conditions, these routes cannot follow a direct trajectory - typically due to persistent constraints in the airspace between origin and destination.

While not directly confirmed by the data, observed patterns likely stem from a mix of factors such as geopolitical tensions, airspace restrictions, oceanic routing, and airline-specific practices, though geopolitical constraints appear to play a central role in many cases.

Average En-Route Distance Extension


Represents the average extra distance flown beyond the GCD calculated en-route, capturing potential routing or traffic constraints

En-Route Distance Extension Analysis

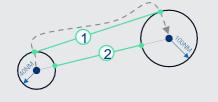
The analysis of average en-route extension builds on the patterns observed in flight distance distributions. Some routes show systematically high extensions relative to their GCD, suggesting persistent structural restrictions to the routes. These may be linked to regional airspace constraints or long-standing routing conventions.

Directional asymmetries in extension are also frequent, with one direction showing consistently higher extension than the other. This may reflect differences in airspace availability, routing procedures, or traffic management strategies such as for routes traversing the North Atlantic which must follow the NAT-OTS due to high airspace utilisation and reduced radar coverage.

In several cases, wide gaps between the upper and lower bounds of en-route extension suggest constraints related to airport entry or exit procedures, as these differences imply that flights cannot align their arrival or departure paths with the trajectory defined by the GCD.

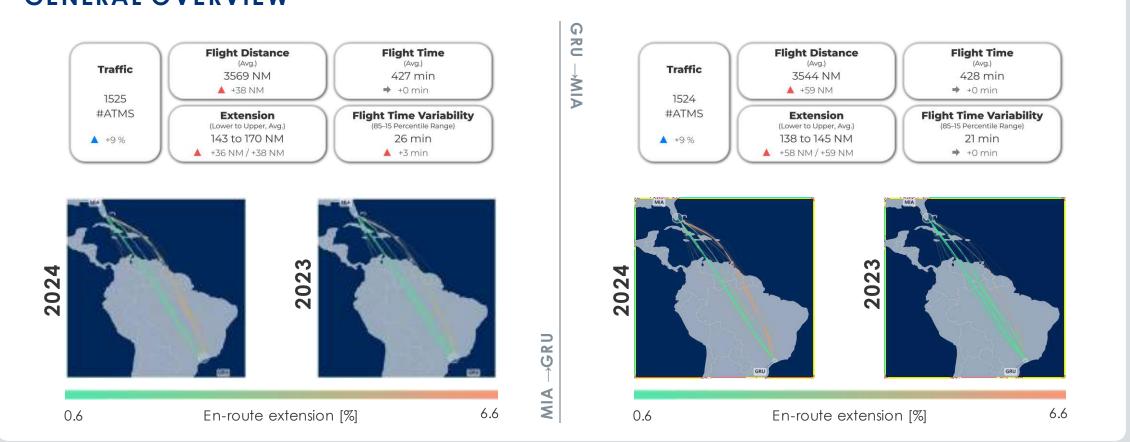
Great Circle Distance

Extension (Lower Bound*)

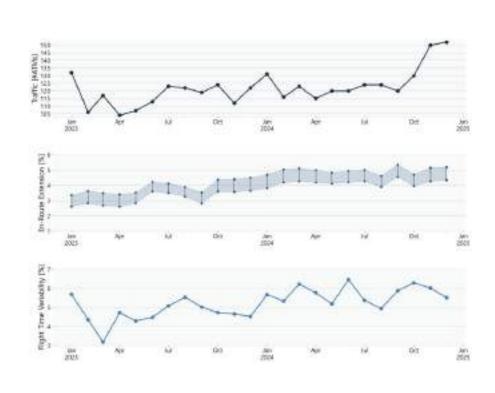

Extension (Lower to Upper Bound*)

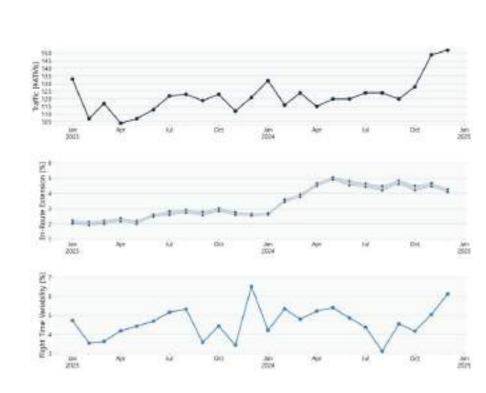
2023 Extension (Lower to Upper Bound*)

CANSO defines en-route extension relative to two GCD-based references:


- Lower Bound: The GCD between the points where the actual flight path intersects the 40 NM (origin) and 100 NM (destination) circles
- 2. Upper Bound: The GCD between the airport-to-airport path intersecting those same circles. This represents the minimum possible en-route path and therefore the maximum extension. This is the GCD represented in the plot with a green bar.

CITY PAIRS FACTSHEET MIAMI – SÃO PAULO


GENERAL OVERVIEW


CITY PAIRS FACTSHEET MIAMI – SÃO PAULO

TEMPORAL EVOLUTION

↑ MIM

Global Air Navigation Services Performance Report

Global Air Navigation Services Performance Report

Focus on cost efficiency and productivity

The CANSO Global Air Navigation Services (ANS) Performance Report is produced annually by CANSO's Global Benchmarking Workgroup (GBWG), with analytical support provided by Egis.

The 2023 report presents data for 48 ANSPs and includes performance indicators for the year 2023, along with trend data covering the period from 2019 to 2023.

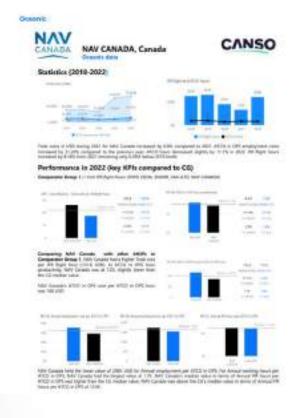
To facilitate a credible comparison of performance, the ANSPs that submitted data to CANSO were grouped into three comparator categories based on the number of IFR hours managed.

Goal to provide a truly global perspective by increasing ANSP participation.

2022 Report

2018 - 2022 ANSP Performance Results

Global Air Navigation Services Performance Report


Focus on cost efficiency and productivity

2022 Performance Data

The following account presents 2002 performence data and 2006-2022 third data for both continental and occanis, activities in the with the CANSC AND Performence Promework forms to pee Prigure 35 and 65 of 67th botom.

101		Numerator Demonstrator		report		
Court S	Eklanep and Productio	Commental 2022/Trend				
	COST per IPH Right now.	Total costs	and fight hours	rigan s	rigurete	
14	ATOD IN OPS prophyropis and per ATOD IN OPS hour	Employment units for ATCOs III OPS	ATCOS IN DPG Hours	Figure 5	Figure 15/1	
26	ATOD in OPS hour productivity	FR/fight hours	ATCOS IN OPE	Figure 6	Figure W	
×	Cost excluding #7COs in OPS employment tosts per IFR flight hours	Enitt excluding ampleyment costs for ATCOs in OFS	est fight nows	Figure 7	Pigure 18	
30	Emplayment costs of ATCOs is OFE as a perbantage of total costs	Employment units for ATCOs In OPS	Total costs	Figure 2	Pigeretti	
54	Annual employment cost per AZCO in CPS	Employment cost for ATCOs in QPS	No of ATCORIN CAS (ETE)	Figure 9. Figure 10	Figure 20, Figure 21	
30	Annual Workinghoun per ATCO in CP5	A700s in ISPS hours	No of ATOOs in OPS (FTE)	Rigure II	Fluxer 22	
9C	Arroyal PR from per Arroy in OPS	artityle house	Ns s/ATCORIN 0#5 (FTE)	Figure 12	Figure 25	
	Replace/fromtime service staff to ATCO in OPS	No. of fronties service support staff (FTE)	No. of ATCORIO CRS (FTE)	Fligure 12	Figure 24	
James matrix	Continental and Oceani Rock	COLUMNIC	Perternance	Continental 2022/		
CUI	Cost per IFH fight nour	Total costs	FR Tight fours	Figure 26		
0020	emprayment codes of ATCON in OPS as a percentage of Total codes	employment moto for ATCOs in OPS	Toral cods	Figure 26		

THANK YOU

James Carr
NAV CANADA - Director Corporate Performance and Sustainability
CANSO – Chair Global Benchmarking Workgroup
james.carr@navcanada.ca

